Под водой как глубоко

Под водой как глубоко Мужчинам
Содержание
  1. Особенности АПЛ России и США
  2. Максимальная глубина погружения подводных лодок
  3. С погружением в морские глубины на каждые 10 метров давление возрастает на 1 атмосферу
  4. Абсолютный рекорд
  5. Перспективы российского атомного подводного флота
  6. Глубина – спасение или погибель
  7. Как происходит погружение подводных лодок
  8. Традиционными аутсайдерами в области глубоководных погружений считаются американские подводники
  9. Конструкционная специфика корпуса
  10. Компоновка корпуса
  11. Реакторный и турбинные отсеки
  12. Три носовых отсека
  13. Три прилегающих к главному командному пункту
  14. Надежно изолированный носовой корпус торпедного отсека
  15. Корпус для размещения ГКП и радиотехнического оборудования
  16. Кормовой переходной корпус общей длиной 30 метров
  17. Применение в боевых условиях
  18. Достоинства и недостатки
  19. Самые глубоководные подводные лодки мира
  20. Наибольшая глубина погружения подлодок ВМФ России, ВМС США и Японии
  21. Они похожи, как самолет и дирижабль
  22. «Комсомолец»
  23. 耐久 значит предел текучести
  24. Немая сцена
  25. Максимальная глубина погружения подводной лодки
  26. Принцип работы подводной лодки
  27. Как погружается подлодка?
  28. Принцип погружения и всплытия
  29. Перспективность отечественных подлодок
  30. Характеристики глубины погружения
  31. Наибольшая глубина погружения батискафа
  32. Факторы увеличения

Особенности АПЛ России и США

Основные отличия лежат в «архитектуре». Американские субмарины однокорпусные: давлению противостоит единый корпус обтекаемой формы. В отличие от них, советские, а позже российские АПЛ – своеобразная «матрешка», где под внешним обтекаемым легким корпусом находится прочный внутренний. Настоящий рекордсмен по количеству корпусов – знаменитый «Тайфун» (проект 941). У самой большой АПЛ в мире внутри легкого корпуса размещаются пять прочных.

По мнению экспертов, двухкорпусные лодки более живучи, хотя и более тяжелы. К примеру, одно лишь резиновое звукоизолирующее покрытие «Тайфуна» весит 800 тонн, что несколько больше, чем вся американская АПЛ NR-1.

Максимальная глубина погружения подводных лодок

Под водой как глубоко

Одна из важнейших характеристик подводной лодки – малозаметность, которая во многом зависит от глубины погружения. Субмарина на большой глубине менее заметна и поэтому менее уязвима, а нанесенный ею удар будет тем неожиданней и неотвратимее.

С погружением в морские глубины на каждые 10 метров давление возрастает на 1 атмосферу

На глубине 1500 м давление составляет 150 атм. На глубине 2000 м давление 200 атм. Это как раз соответствует максимальному значению ВСД и ВНД в системах подводных лодок.

Ситуация усугубляется ограниченными объемами сжатого воздуха на борту. Особенно после продолжительного нахождения лодки под водой. На глубине 50 метров имеющихся запасов может быть достаточно для вытеснения воды из балластных цистерн, но на глубине 500 метров этого хватит лишь для продувания 1/5 их объема. Большие глубины — всегда риск, и там требуется действовать с предельной осторожностью.В наши дни существует практическая возможность создания подлодки с корпусом, рассчитанным на глубину погружения 5000 метров. Но для продувания цистерн на такой глубине потребовался бы воздух под давлением свыше 500 атмосфер. Сконструировать трубопроводы, клапаны и арматуру, рассчитанные под такое давление, при сохранении их разумной массы и исключения всех связанных опасностей на сегодняшний день является технически неразрешимой задачей.

Под водой как глубоко

Современные подлодки строятся по принципу разумного баланса характеристик. Зачем делать высокопрочный корпус, выдерживающий давление километровой толщи воды, если системы всплытия рассчитаны на гораздо меньшие глубины. Погрузившись на километр, подлодка будет обречена в любом случае.Однако в этой истории имеются свои герои и отверженные.

Абсолютный рекорд

Речь идет о подводной лодке «Комсомолец», к сожалению, трагически затонувшей, однако ей принадлежит все еще непокоренная вершина в освоении морских глубин современными субмаринами. Этот уникальный проект пока не имеет аналогов во всем мире. Дело в том, что для изготовления ее корпуса был использован очень прочный, дорогой и чрезвычайно неудобный в обработке материал — титан. Максимальная глубина погружения подводной лодки в мире пока все еще принадлежит «Комсомольцу». Этот рекорд был установлен в 1985 году, когда советская субмарина достигла 1027 метров ниже поверхности моря.

Под водой как глубоко

К слову, рабочее значение для нее составляло 1000 м, а расчетное — 1250. В итоге «Комсомолец» затонул в 1989 году из-за сильного пожара, начавшегося на глубине около 300 метров. И хотя ему, в отличие от того же «Трешера», удалось всплыть, история все равно получилась очень трагической. Пожар настолько повредил подлодку, что она почти сразу пошла ко дну. Несколько человек погибли еще при пожаре, а около половины экипажа утонуло в ледяной воде, пока подоспевала помощь.

  • https://www.techcult.ru/technics/5015-maksimalnaya-glubina-pogruzheniya-podvodnyh-lodok
  • https://progress.online/oborona/2334-kakova-maksimalnaya-glubina-pogruzheniya-podvodnyh-lodok
  • https://FB.ru/article/272700/maksimalnaya-glubina-pogrujeniya-podvodnyih-lodok-osobennosti-i-trebovaniya
  • https://tehnowar.ru/117853-Naibolyshaya-glubina-pogrugheniya-podlodok-VMF-RossiiVMS-SShA-i-Yaponii.html
  • https://global-ocean.ru/tekhnika/maksimalnaya-glubina-pogruzheniya-vodolaz-podlodka-batiskaf/
  • https://zen.yandex.com/media/glavpaluba/ustroistvo-i-princip-raboty-podvodnoi-lodki-5dc7fb9da02e001559b672b2

Перспективы российского атомного подводного флота

Под водой как глубоко

За последние 4 года состав ВМФ России пополнился четырьмя современными АПЛ: «Северодвинск» (пр. «Ясень») с рабочей и предельной глубинами погружения соответственно 520 и 600 м, «Владимир Мономах» – 400 и 480 м, «Юрий Долгорукий» — 400 и 450 м, «Александр Невский» — 400 и 480 метров. На очереди еще 11 атомных субмарин проектов «Борей-А» и «Ясень».

Однако глубина погружения – не единственное их преимущество. Сегодня гораздо большее значение приобретает малошумность. Как утверждают эксперты, здесь Россия вышла на лидирующие позиции в мире.

Глубина – спасение или погибель

Затаиться, незаметно подкрасться к противнику и нанести по нему уничтожающий удар, после чего незаметно исчезнуть – так можно обозначить тактику подводной лодки. И глубина здесь – один из важнейших факторов.

Однако она же таит в себе колоссальную опасность. На глубине всего 50 метров выходной люк боевой рубки площадью 2 м² испытывает на себе давление почти 60000 кг. Нетрудно подсчитать, насколько увеличится этот показатель на глубине 300-400 метров.

За управляемость субмарины в вертикальной плоскости отвечают, как правило, две пары горизонтальных рулей – кормовые и носовые. В зависимости от их положения лодка получает дифферент на нос или корму. Задача командира и экипажа – осуществлять необходимое маневрирование в рамках технических возможностей лодки, чтобы, если такое случится, предельное, максимальное погружение не оказалось последним.

Как происходит погружение подводных лодок

Эволюция подводного флота – это постепенное погружение на большую глубину. Если во времена Первой и Второй мировых войн она ограничивалась соответственно 80-100 и 100-150 метрами, то сегодня этот показатель вырос в 3-5 раз.

Как происходит погружение? В надводном положении субмарина мало чем отличается от обычного судна, если не брать в расчет ее специфический внешний вид. Погружение происходит за счет приема в цистерны балласта – забортной воды. Ёмкости расположены между легким и прочным корпусами.

Под водой как глубоко

Всплытие осуществляется «в обратном порядке» — путем продува балласта. Вода выдавливается из цистерн мощным потоком сжатого воздуха. После полного погружения глубина, на которой находится лодка, регулируется специальными рулями.

Традиционными аутсайдерами в области глубоководных погружений считаются американские подводники

Корпуса американских лодок на протяжении полувека делаются из одного сплава HY-80 с весьма посредственными характеристиками. High-yield-80 = сплав повышенной прочности с пределом текучести 80 000 фунтов на кв. дюйм, что соответствует значению 550 МПа.

Под водой как глубоко

Многие эксперты выражают сомнения в адекватности такого решения. Из-за слабого корпуса лодки неспособны в полной мере использовать возможности систем всплытия. Которые позволяют продувание цистерн на значительно больших глубинах. По оценкам, рабочая глубина погружения (глубина, на которой лодка может находиться длительное время, совершая любые маневры) для американских субмарин не превышает 400 метров. Предельная глубина — 550 метров.Применение HY-80 позволяет удешевить и ускорить сборку корпусных конструкций, среди преимуществ всегда назывались хорошие сварочные качества этой стали.Для ярых скептиков, которые немедленно заявят, что флот «вероятного противника» массово пополняется небоеспособным хламом, нужно заметить следующее. Те различия в темпах кораблестроения между Россией и США обусловлены не столько применением более качественных сортов стали для наших подлодок, сколько другими обстоятельствами. Ну да ладно.За океаном всегда полагали, что супергерои не нужны. Подводное оружие должно быть максимально надежным, тихим и многочисленным. И в этом есть доля правды.

Мужчинам:  Оставайтесь в форме и сильными: важные советы для мужского здоровья

Конструкционная специфика корпуса

Под водой как глубоко

Компоновка корпуса

Общая конструкция подводных лодок проекта 941 «Акула» разделена на пять отдельных прочных корпусов, объединенных одним внешним. Два из них считаются ключевыми, диаметр в некоторых местах доходит до 10 м. В передней части между ними располагаются ракетные шахты.

Основные корпусы имеют переходы в передней, центральной и задней части лодки. Всего предусмотрено 19 водонепроницаемых отсеков. У основания рубки имеются две всплывающие камеры, рассчитанные на эвакуацию всего экипажа.

Кроме двух основных корпусов имеются три дополнительных — торпедный отсек, модуль управления и механический. Все они изолированы друг от друга, что повышает пожаробезопасность и выживаемость подлодки в экстренных ситуациях.

Внешний легкий корпус стальной, имеет нерезонансное звукоизолирующее и противолокационное резиновое покрытие. Обшивка прочных корпусов выполнена из титановых сплавов. Особое внимание уделено рубке — верхние ограждения позволяют пробивать полярный лед до 2,5 м толщиной.

Кормовое оперение подводной лодки крестообразное, имеет горизонтальные рули за винтами. Передние горизонтальные рули убираются.

Для экипажа предусмотрены комфортные условия размещения. Имеется салон для отдыха, спортивный зал, бассейн 4х2х2 м, солярий, сауна, «живой» уголок, две кают-компании для офицеров и матросов. Рядовые размещены в малогабаритных кубриках, офицеры — в двух- и четырехместных каютах с умывальниками, телевизорами и кондиционерами.

Реакторный и турбинные отсеки

Реакторный и турбинные отсеки находятся в кормовой части в двух основных корпусах. Между турбинными имеется отдельная кормовая шлюзовая рубка.

Три носовых отсека

Два носовых отсека основных корпусов — гидроакустические. Между ними в изолированном корпусе находится торпедный отсек. Прилегающие отсеки основной части — ракетные.

Три прилегающих к главному командному пункту

Три прилегающие к центральному посту отсека обеспечивают живучесть лодки. Здесь же располагаются всплывающие камеры для эвакуации.

Надежно изолированный носовой корпус торпедного отсека

Торпедный отсек изолирован от основных корпусов прочной обшивкой. По заявлению главного конструктора С. Н. Ковалева ситуация, произошедшая с атомной подлодкой «Курск» после взрыва торпеды, на «Акулах» не имела бы таких катастрофических последствий.

Корпус для размещения ГКП и радиотехнического оборудования

Главный командный пост (ГКП) располагается в центральной части, в рубке. Имеет изолированный от других отсеков корпус. Сюда же выведено все радиотехническое оборудование, обеспечивающее управление лодкой.

Кормовой переходной корпус общей длиной 30 метров

Кормовой переходный корпус — технические отсеки, от реактора к турбинному отделению. Отдельного изолирования от общих отсеков не имеет, однако герметичное закрытие присутствует.

Применение в боевых условиях

В боевых условиях корабли проекта 941 не применялись. Основное их участие — патрулирование в арктических водах, участие в испытаниях. В 1987 ТК-12 осуществил длительный высокоширотный поход в Арктику со сменой экипажей. В 1997 в ходе испытаний Северного флота с борта ТК-20 осуществлен залповый пуск 20 ракет Р-39.

Достоинства и недостатки

Под водой как глубоко

«Акула» на стоянке

С появлением высокоточных баллистических ракет стратегического назначения стационарные пусковые шахты стали терять позиции в вопросе нанесения гарантированного ответного удара. Атомные подводные крейсеры проекта 941 создавались с целью восстановления данного потенциала.

Достоинства подлодок «Акула» представлены тремя ключевыми аспектами:

  • возможность несения службы в Арктике, включая подледные шельфы;
  • тяжелые Р-39, не имеющие аналогов среди переносимых стратегических ракет;
  • повышенная безопасность и живучесть экипажа и подлодки ввиду конструктивной компоновки.

Появление таких крейсеров на вооружении советского флота подтолкнуло США к подписанию договора ОСВ-2. Именно данные лодки обеспечили паритет мировых держав в Холодной войне, их фото до сих пор внушают уважение и страх перед возможной ядерной войной.

Недостатки проекта 941 имеют спорные основания. Высказываются претензии к размерам, вызванным низким качеством твердого топлива Р-39, ходовым свойствам и управляемости подлодки, шуме, высокой стоимости. В современной аналитике бытует мнение, что для СССР важнее было показать масштаб и мощь, чем практическую эффективность и целесообразность.

Однако сравнение ТТХ с зарубежными и отечественными аналогами показывает, что большая часть этих претензий не имеют существенных оснований. Определенные проблемы с уровнем шума и стоимостью действительно существуют, однако они находятся в допустимых пределах с поправкой на время разработки и соразмерность.

Самые глубоководные подводные лодки мира

Большая часть мирового океана имеет среднюю глубину в 3 км, 12-ти километровая Марианская впадина была покорена полвека назад, однако современные военные подводные лодки, как правило, имеют предельную глубину погружения 500-600 метров. Почему же так?

Сегодня в мире существуют два рекорда по глубине погружения – в 1985 году советская атомная подводная лодка «Комсомолец» (проект 685 «Плавник»), которая погрузилась на 1027 метров.

Второй рекорд принадлежит российской глубоководной атомной подводной лодке «Лошарик», АС-12 или АС-31, которая была спущена на воду в 2003 году, но до сих пор многие данные по лодке засекречены. По одной информации «Лошарик» может погружаться до 6 км, по другой – до 3 км, но обе глубины – огромны.

Но эти две лодки – только исключение, подтверждающие правило – подводные лодки редко погружаются глубже 500-600 метров.

Чтобы понять, почему батискаф может, а лодка – нет, нужно понимать, что система погружения/всплытия у этих двух подводных аппаратов разная. Если у батискафа это балласт и запас воздуха, подцепляя балласт, батискаф погружается, отработав на глубине и отцепив балласт – всплывает. А вот подводной лодке необходимо многократно менять глубину нахождения под водой, и система с разовым балластом здесь не работает.

Потому подводная лодка имеет балластные цистерны , которые при погружении заполняются забортной водой, а при всплытии продуваются воздухом под давлением.

Так вот, если подводная лодка будет находится на слишком большой глубине, то давления сжатого воздуха не хватит для продувки цистерн , и лодка пойдет ко дну, вместо того, чтобы всплыть. И даже если ее не раздавит огромным давлением, то все равно экипаж обречен, и погибнет от нехватки кислорода.

Вот потому-то и нет глубоководных подлодок, и прочность корпуса здесь – вопрос второй.

Наибольшая глубина погружения подлодок ВМФ России, ВМС США и Японии

Факт существования батискафа, сумевшего покорить глубочайшую бездну, свидетельствует о технической возможности создания обитаемых аппаратов для погружений на любые глубины.

Под водой как глубоко

Почему же ни одна из современных подлодок и близко не способна погрузиться — даже на 1000 метров?

Полвека назад собранный из подручных средств стандартной стали и плексигласа батискаф достиг дна Марианской впадины. И мог бы продолжить свое погружение, если бы в природе встречались большие глубины. Безопасная расчетная глубина для «Триеста» составляла 13 километров!

Мужчинам:  На каком сроке проходят второй скрининг при беременности

Свыше 3/4 площади Мирового океана приходится на абиссальную зону: океанское ложе с глубинами свыше 3000 м. Подлинный оперативный простор для подводного флота! Почему никто не использует эти возможности?

Покорение больших глубин никак не связано с прочностью корпуса «Акул», «Бореев» и «Вирджиний». Проблема заключается в другом. И пример с батискафом «Триест» здесь совершенно ни при чем.

Они похожи, как самолет и дирижабль

Батискаф — это «поплавок». Цистерна с бензином, с закрепленной под ней гондолой экипажа. При принятии на борт балласта конструкция обретает отрицательную плавучесть и погружается в глубину. При сбрасывании балласта — возвращается на поверхность.

Под водой как глубоко

В отличие от батискафов, подводным лодкам требуется в течение одного погружения многократно изменять глубину нахождения под водой. Иначе говоря, подводный корабль обладает способностью многократно изменять запас плавучести. Это достигается путём заполнения забортной водой балластных цистерн, которые при всплытии продуваются воздухом.

Обычно на лодках применяются три воздушные системы: воздух высокого давления (ВВД), среднего (ВСД) и низкого давления (ВНД). К примеру, на современных американских атомоходах запасы сжатого воздуха хранятся в баллонах под давлением 4500 фунтов на кв. дюйм. Или, по-человечески, примерно 315 кг/см2. Однако ни одна из систем-потребителей сжатого воздуха не использует ВВД напрямую. Резкие перепады давления вызывают интенсивное обмерзание и закупорку арматуры, одновременно создавая опасность компрессионных вспышек паров масла в системе. Повсеместное применение ВВД под давлением свыше 300 атм. создало бы недопустимые опасности на борту субмарины.

ВВД через систему редукционных клапанов поступает к потребителям в виде ВСД под давлением 3000 фн. на кв. дюйм (примерно 200 кг/см2). Именно таким воздухом продуваются цистерны главного балласта. Для обеспечения работы остальных механизмов лодки, запуска оружия, а также продувания дифферентных и уравнительных цистерн применяется «рабочий» воздух под еще более низким давлением около 100-150 кг/см2.

И здесь в действие вступают законы драматургии!

Под водой как глубоко

Под водой как глубоко

«Комсомолец»

Неуловимый «Майк» (К-278 по классификации НАТО) установил абсолютный рекорд глубины погружения среди подводных лодок — 1027 метров.

Предельная глубина погружения «Комсомольца» по расчетам составляла 1250 м.

Среди главных отличий конструкции, несвойственных другим отечественным подлодкам, — 10 бескингстонных цистерн, размещенных внутри прочного корпуса. Возможность стрельбы торпедами с больших глубин (до 800 метров). Всплывающая спасательная капсула. И главная изюминка — аварийная система продувания цистерн с помощью газогенераторов.

Реализовать все заложенные преимущества позволил корпус, изготовленный из титанового сплава.

Сам по себе титан не являлся панацеей при покорении морских глубин. Главным при создании глубоководного «Комсомольца» были качество сборки и форма прочного корпуса с минимумом отверстий и ослабленных мест.

Титановый сплав 48-Т с пределом текучести 720 МПа лишь незначительно превосходил по прочности конструкционную сталь HY-100 (690 МПа), из которой изготавливались подлодки «СиВулф».

Другие описываемые «преимущества» титанового корпуса в виде малых магнитных свойств и его меньшей подверженности коррозии сами по себе не стоили затраченных средств. Магнитометрия никогда не являлась приоритетным способом обнаружения лодок; под водой все решает акустика. А проблема морской коррозии уже лет двести решается более простыми методами.

Под водой как глубоко

Титан с точки зрения отечественного подводного кораблестроения обладал ДВУМЯ реальными преимуществами:

б) Среди всех высокопрочных сталей и сплавов титановый сплав 48-Т оказался наиболее технологичным в обработке и при сборке корпусных конструкций.

«Наиболее технологичный» — не значит простой. Но сварочные качества титана хотя бы позволяли производить сборку конструкций.

За океаном имели более оптимистичный взгляд на применение сталей. Для изготовления корпусов новых подлодок XXI века была предложена высокопрочная сталь марки HY-100. В 1989 году в Штатах заложили головной «СиВулф». Спустя два года оптимизма поубавилось. Корпус «СиВулфа» пришлось разобрать на иголки и начинать работу заново.

В настоящее время многие проблемы решены, и стальные сплавы, эквивалентные по свойствам HY-100, находят более широкое применение в кораблестроении. По некоторым данным, подобная сталь (WL = Werkstoff Leistungsblatt 1.3964) применяется при изготовлении прочного корпуса немецких неатомных подлодок «Тип 214».

Существуют еще более прочные сплавы для изготовления корпусов, например, стальной сплав HY-130 (900 МПа). Но из-за плохих сварочных свойств корабелы считали применение HY-130 невозможным.

Пока не поступили новости из Японии.

耐久 значит предел текучести

Как утверждает старая пословица: «Что бы вы ни умели делать хорошо, всегда найдется азиат, который делает это лучше».

В открытых источниках присутствует крайне мало информации о характеристиках японских боевых кораблей. Однако экспертов не останавливают ни языковой барьер, ни параноидальная секретность, свойственная вторым по силе ВМС в мире.

Из доступной информации следует, что самураи наряду с иероглифами широко используют английские обозначения. В описании подлодок присутствует сокращение NS (Naval Steel — военно-морская сталь), сочетаемая с цифровыми индексами 80 или 110.

В метрической системе счисления «80» при обозначении марки стали, скорее всего, означает предел текучести 800 МПа. Более прочная сталь NS110 имеет предел текучести 1100 МПа.

С точки зрения американца, стандартная для японских подлодок сталь носит обозначение HY-114. Более качественная и прочная — HY-156.

Немая сцена

«Кавасаки» и «Мицубиси Хэви Индастриз» без всяких громких обещаний и «Посейдонов» научились изготавливать корпуса из материалов, ранее считавшихся несваримыми и невозможными при постройке подлодок.

Приведенные данные соответствуют устаревшим субмаринам с воздухонезависимой установкой типа «Оясио». В составе флота 11 единиц, из которых две самые старые, вступившие в строй в 1998-1999 гг., переведены в разряд учебных.

«Оясио» имеет смешанную двухкорпусную конструкцию. Наиболее логичное предположение — центральная секция (прочный корпус) изготовлена из наиболее прочной стали NS110, в носовой и кормовой частях лодки применяется двухкорпусная конструкция: легкая обтекаемая оболочка из NS80 (давление внутри = давлению снаружи), прикрывающая цистерны главного балласта, вынесенные за пределы прочного корпуса.

Под водой как глубоко

Современные японские субмарины типа «Сорю» считаются улучшенными «Оясио» с сохранением основных конструктивных решений, доставшийся им от предшественников.

При наличии прочного корпуса из стали NS110 рабочая глубина «Сорю» оценивается как минимум в 600 метров. Предельная — 900.

С учетом представленных обстоятельств ВМС самообороны Японии на сегодняшний день обладают самым глубоководными флотом боевых подлодок.

Японцы «выжимают» всё возможное из доступного. Другой вопрос, насколько это поможет в морском конфликте. Для противостояния в морских глубинах необходимо наличие ядерной силовой установки. Жалкие японские «полумеры» с увеличением рабочей глубины или созданием «лодки на батарейках» (удивившая мир подлодка «Орю») похожи на хорошую мину при плохой игре.

С другой стороны, традиционное внимание к мелочам всегда позволяло японцам иметь преимущество над противником. Появление ядерной силовой установки для ВМС Японии — вопрос времени. Но у кого в мире еще имеются технологии изготовления сверхпрочных корпусов из стали с пределом текучести 1100 МПа? Олег Капцов

Максимальная глубина погружения подводной лодки

Возможность погружаться на большую глубину очень важна для подводных лодок, ведь она даёт возможность скрытно подобраться как можно ближе к противнику. Под толщей воды намного сложней засечь моторы лодки и поразить её торпедой. Поэтому между морскими державами постоянно идёт незаметное соревнование в создании глубоководных аппаратов, способных погружаться на большую глубину.

Мужчинам:  Как купить термобельё правильно? — Блог «Спорт-Марафон»

Первенство в этой области принадлежит нашей стране. В 1985 году был установлен мировой рекорд погружения для подводной лодки: субмарина проекта 685 «Плавник» смогла опуститься на глубину 1030 метров. Это была АПЛ «Комсомолец» под номером К-278, которая не только опустилась на глубину более километра, но и провела на этой глубине успешную стрельбу торпедами.

Под водой как глубоко

К сожалению, спустя четыре года эта лодка затонула в Норвежском море, по официальной версии – из-за пожара, возникшего на её борту во время плавания. Подробности и настоящие причины гибели субмарины «Комсомолец» остаются невыясненными до сих пор.

Принцип работы подводной лодки

Для нормального функционирования подводной лодки она должна:

  • выдерживать давление воды в подводном положении;
  • обеспечивать управляемость при погружении, всплытии и смене глубины;
  • иметь оптимальную обтекаемую форму;
  • сохранять работоспособность в соответствии с ее ТТХ.

Как погружается подлодка?

С тех пор, как люди начали строить первые субмарины, прошло много времени, а возможности таких аппаратов существенно выросли. Например, во времена Второй мировой войны субмарины плавали на глубине в 100-150 м. В наши дни этот показатель может увеличиваться до 3-5 раз.

Когда подлодка находится на поверхности воды, то она не сильно отличается от обыкновенного судна, за исключением внешнего вида. Начать погружение удается, когда в специальные цистерны начинает поступать вода, играющая роль балласта. Эти цистерны находятся между легкой и прочной обшивками конструкции.

Соответственно, для того, чтобы субмарина поднялась на поверхность, необходимо произвести обратный процесс, т.е. избавиться от балласта. Для опустошения цистерн применяется сильный поток сжатого воздуха.

Принцип погружения и всплытия

Для погружения под воду специальные цистерны на борту субмарины заполняются балластом (забортной водой). Все в соответствии с законом Архимеда – для полного погружения необходимо уровнять вес лодки с весом вытесненной воды.

При всплытии осуществляется обратный процесс – продув балласта, вследствие чего вода вытесняется из цистерн сжатым воздухом. В подводном положении лодка может менять глубину погружения с помощью рулей.

Ёмкости, заполняемые забортной водой, носят название цистерны главного балласта (ЦГБ). Они разделены на три группы – носовую, среднюю и кормовую. ЦГБ заполняются в зависимости от выполняемого ПЛ маневра. К примеру, при срочном погружении балластом заполняется цистерна быстрого погружения.

Неуловимый «Майк» (К-278 по классификации НАТО) установил абсолютный рекорд глубины погружения среди подводных лодок — 1027 метров.Предельная глубина погружения «Комсомольца» по расчетам составляла 1250 м.Среди главных отличий конструкции, несвойственных другим отечественным подлодкам, — 10 бескингстонных цистерн, размещенных внутри прочного корпуса. Возможность стрельбы торпедами с больших глубин (до 800 метров). Всплывающая спасательная капсула. И главная изюминка — аварийная система продувания цистерн с помощью газогенераторов.Реализовать все заложенные преимущества позволил корпус, изготовленный из титанового сплава.Сам по себе титан не являлся панацеей при покорении морских глубин. Главным при создании глубоководного «Комсомольца» были качество сборки и форма прочного корпуса с минимумом отверстий и ослабленных мест.Титановый сплав 48-Т с пределом текучести 720 МПа лишь незначительно превосходил по прочности конструкционную сталь HY-100 (690 МПа), из которой изготавливались подлодки «СиВулф».Другие описываемые «преимущества» титанового корпуса в виде малых магнитных свойств и его меньшей подверженности коррозии сами по себе не стоили затраченных средств. Магнитометрия никогда не являлась приоритетным способом обнаружения лодок; под водой все решает акустика. А проблема морской коррозии уже лет двести решается более простыми методами.

Под водой как глубоко

Перспективность отечественных подлодок

За последние несколько лет на вооружение ВМФ России поступило несколько современных субмарин. Можно выделить следующие АПЛ:

  • «Северодвинск» с рабочей и предельной глубинами в 520 и 600 м соответственно,
  • «Александр Невский» с рабочей и предельной глубинами в 400 и 480 м соответственно.

Стоит сказать, что в условиях современного мира показатель максимального погружения уже не является столь принципиальным. Куда важнее сейчас создать субмарины, издающие как можно меньший шум в процессе работы.

Характеристики глубины погружения

Способность субмарины к погружению характеризуется двумя основными показателями – рабочей (оперативной) и предельной глубиной. В первом случае речь идет о глубине, на которую лодка может погружаться без каких-либо ограничений на протяжении всего срока ее эксплуатации.

Предельная глубина погружения обозначает ту границу, ниже которой может начаться разрушение обшивки и всей конструкции. Обычно сразу после спуска на воду субмарину отправляют на предельную глубину, где ее «обкатывают» какое-то время. У каждого типа подводных лодок этот показатель индивидуален.

Абсолютным рекордсменом максимального погружения до сего времени остается советская АПЛ «Комсомолец», «нырнувшая» в 1985 году почти на 1030 метров. Увы, ее судьба в дальнейшем сложилась трагически. Спустя 4 года, в результате пожара, приведшего к необратимым разрушениям корпуса, она затонула в Норвежском море.

Наибольшая глубина погружения батискафа

Наиболее удобным аппаратом для изучения морских глубин до сих пор остаётся батискаф. От него не требуется хорошей плавучести, единственное требование – высокая прочность стенок, которые должны выдержать чудовищное давление огромной толщи воды.

Впервые на рекордную для человечества глубину, составляющую около 11 тысяч метров, опустился батискаф под названием «Триест», построенный учёными из США и Швейцарии. Акванавты пробыли на дне самой глубокой точки Марианской впадины всего 20 минут, а подготовка к погружению заняла около 8 лет. За это время был построен аппарат, толщина стенок которого составляла 1500 мм, а вес превышал 10 тонн. Рекордное погружение «Триеста» состоялось в 1960 году.

Под водой как глубоко

Спустя 52 года, в 2012 году, достижение было повторено американским кинорежиссёром Джеймсом Кэмероном. Аппарат, на котором он спускался, носит название Deepsea Challenger. Режиссёр совершил своё погружение в одиночку, при этом постоянно вёл съёмку и даже собрал на дне Марианской впадины образцы грунта.

Под водой как глубоко

Факторы увеличения

В связи с этим есть несколько соображений. Увеличение глубины позволяет улучшать маневренность подлодки в вертикальной плоскости, поскольку длина боевого корабля обычно составляет не менее нескольких десятков метров. Таким образом, если он находится в 50 метрах под водой, а его габариты в два раза больше, перемещение вниз или вверх чревато полной потерей маскировки.

Под водой как глубоко

Кроме того, в водных толщах имеется такое понятие, как «тепловые слои», которые сильно искажают гидролокационный сигнал. Если уходить ниже их, то подлодка становится практически «невидимой» для следящего оборудования надводных кораблей. Не говоря уже о том, что на больших глубинах такой аппарат намного сложнее уничтожить любым имеющимся на планете оружием.

Чем больше глубина погружения подводных лодок, тем прочнее должен быть корпус, способный выдерживать невероятные давления. Это, опять же, на руку общей обороноспособности корабля. Наконец, если предел глубины позволяет ложиться на океанское дно, это также повышает невидимость подлодки для любого локационного оборудования, имеющегося в распоряжении современных систем отслеживания.

Оцените статью
ManHelper.ru
Добавить комментарий